

# GEN2

# ADCS ACTUATORS

Our Gen 2 actuators are the next step towards a complete, unified ADCS solution for all sizes of satellites. It builds on the successes of Gen 1 and refines the most important aspects. The architecture behind the Gen 2 components allows for full scalability in size, unlocking the potential to apply our ADCS systems for much larger satellites. The new architecture ushers in better connectivity, more mechanically robust designs, and full in-orbit reprogramability.



#### Robust, high-efficiency reaction wheels

CubeWheels are built using high-precision, high-load bearings with state-of-the-art space-rated lubrication. Despite its robust nature, each wheel is balanced to perfection to enable high precision and stability ADCS systems. Integrated into each wheel is a radiation tolerant electronic drive circuit, which makes controlling it extremely simple. The ease of use, together with the robust design, makes CubeWheel the perfect reaction wheel for satellites with strict requirements on reliability.



#### CubeTorquer

#### Ultra-low remanence magnetic torquers

Each of our torquers are built using a heat-treated ferrous core, which delivers ultra-low magnetic remanence and high linearity. Our torquers are built using automated machinery and goes through rigorous testing, which ensures absolute repeatability, and enables high volumes and low cost. With their compact design, and low-profile connector, they are perfectly suited for satellites where space and mass are of high priority.

# PRODUCT INFORMATION

#### CubeWheel

\* Preliminary specifications.

| Performance                     | CW0017                                               | CW0057    | CW0162   | CW0500*  | CW1200*  | CW2500*  | CW5000*    |
|---------------------------------|------------------------------------------------------|-----------|----------|----------|----------|----------|------------|
| Nominal Motor Supply Voltage    | 8                                                    | 12        | 12       | 12       | 16       | TBD      | TBD        |
| Max Speed [RPM]                 | 8000                                                 | 10000     | 10000    | 10000    | 10000    | 10000    | 10000      |
| Momentum @ 6000 RPM [mNms]      | 1.77                                                 | 5.7       | 16.2     | 50       | 120      | 250      | 500        |
| Saturation Torque [mNm]         | 0.23                                                 | 2         | 7        | 10       | 15       | 20       | 30         |
| Dynamic Imbalance [g.cm²]       | <0.005                                               | <0.014    | <0.014   | <0.05    | TBD      | TBD      | TBD        |
| Physical                        |                                                      |           |          |          |          |          |            |
| Mass [g]                        | 60                                                   | 115       | 144      | 400      | TBD      | TBD      | TBD        |
| Dimensions [WxHxL] [mm]         | 28x26x28                                             | 35x24x35  | 46x24x46 | 67x25x67 | 76x30x76 | 88x40x88 | 100x40x100 |
| Power & Data                    |                                                      |           |          |          |          |          |            |
| Data Bus**                      | CAN/UART/RS-485 **I2C available for custom solutions |           |          |          |          |          |            |
| Connector                       | Molex Micro-Lock Plus TBD                            |           |          |          |          |          |            |
| Digital Supply Voltage [V]      | 3.3                                                  | 3.3       | 3.3      | 3.3      | 3.3      | 3.3      | 3.3        |
| Motor Supply Voltage Range [V]  | 6.4-16.8                                             | 6.4-16.8  | 6.4-16.8 | TBD      | TBD      | TBD      | TBD        |
| Average Power [2000 rpm] [mW]   | 150                                                  | 336       | 336      | TBD      | TBD      | TBD      | TBD        |
| Peak Power [Max Torque]         | 580 mW                                               | 16.5 W    | 16.5 W   | 13 W     | TBD      | TBD      | TBD        |
| Qualification Level             |                                                      |           |          |          |          |          |            |
| Radiation                       | 24 kRad                                              |           |          |          |          |          |            |
| Random Vibration                | 14.16 g RMS (NASA GEVS)                              |           |          |          |          |          |            |
| Thermal vacuum [°C]             | -20 to 80                                            |           |          |          |          |          |            |
| Thermal cold and hot start [°C] |                                                      | -35 to 70 |          |          |          |          |            |

#### CubeTorquer

Thermal vacuum [°C]

Thermal cold and hot start [°C]

| oube foliqu                       |                         |              |              |              |              |              |           |           |
|-----------------------------------|-------------------------|--------------|--------------|--------------|--------------|--------------|-----------|-----------|
| Performance                       | CR0002                  | CR0003       | CR0004       | CR0006       | CR0008       | CR0010       | CR0012    | CR0020    |
| Max Voltage [V]                   |                         |              |              | 5            | 5            |              |           |           |
| Minimum Magnetic Moment [Am²] @ 5 | 5v 0.20                 | 0.30         | 0.40         | 0.63         | 0.80         | 1.00         | 1.20      | 2.00      |
| Magnetic Gain [Am²/A]             | 2.3                     | 4.3          | 3.3          | 5.8          | 7.0          | 7.8          | 8.6       | 13.2      |
| Linearity [0-5V]                  | 2.50 %                  |              |              |              |              |              |           |           |
| Nominal Resistance [ $\Omega$ ]   | 51.0                    | 66.5         | 39.5         | 45.0         | 44.5         | 37.5         | 36.5      | 32.5      |
| Physical                          |                         |              |              |              |              |              |           |           |
| Mass [g]                          | 16.5                    | 23           | 22           | 31           | 28           | 37           | 45        | 54        |
| Dimensions [WxHxL] [mm]           | 10.5x10.5x47            | 10.5x10.5x59 | 10.5x10.5x59 | 10.5x10.5x77 | 10.5x10.5x92 | 10.5x10.5x92 | 13x13x122 | 13x13x152 |
| Power & Data                      |                         |              |              |              |              |              |           |           |
| Connector                         | Molex Pico-Lock         |              |              |              |              |              |           |           |
| Qualification Level               |                         |              |              |              |              |              |           |           |
| Radiation                         | N/A                     |              |              |              |              |              |           |           |
| Random Vibration                  | 14.16 g RMS (NASA GEVS) |              |              |              |              |              |           |           |

-20 to 80

-35 to 70

## **KEY FEATURES**

#### CubeTorquer











CubeWheel

**2U - 27U** 







INTERNAL MAGNETIC
SHIELDING

INFLIGHT REPROGRAMABILITY

-20°C-80°C



## WHEEL CONFIGURATION

Depending on the application, a satellite may benefit from either 3 wheels mounted orthogonally or 4 in a pyramid configuration.

| CONFIGURATION | DESCRIPTION                                                                                                                                                                                                  | TYPICAL USE CASE                          |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 3-Wheel       | Three orthogonal reaction wheels are used to enable full 3-axis control.                                                                                                                                     | Nadir, sun and inertial pointing.         |
| 4-Wheel       | Four reaction wheels are mounted in a pyramid configuration to enable 3-Axis control, while providing redundancy for the loss of any one wheel. Wheels are biased to an offset speed to avoid zero crossings | Target tracking and fast slew manoeuvres. |

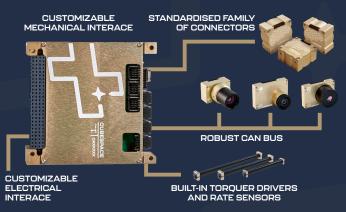


3-Wheel configuration



4-Wheel configuration

#### **ACTUATOR SIZING**


| SATELLITE SIZE | CUBEWHEEL             | CUBETORQUER     |
|----------------|-----------------------|-----------------|
| 2U (2 kg)      | 3x CW0017             | CR0002          |
| 3U (4 kg)      | 3x CW0057 / 4x CW0017 | CR0002 / CR0003 |
| 6U (10 kg)     | 3x CW0162 / 4x CW0057 | CR0004 / CR0008 |
| 12U (20 kg)    | 3x CW0500 / 4x CW0162 | CR0012          |
| 27U (50 kg)    | 3x CW1200 / 4x CW0500 | CR0020          |

These are typical configurations. Each satellite and mission are different. Please contact us if you need support to size and select your actuators.

# **UPGRADE TO A TURN-KEY ADCS**

Our integrated ADCS solutions combine our radiation tolerant computer, our flight-proven control system algorithms, our robust fault-detection and correction software, our comprehensive data and event logging mechanisms, with any selection of our sensors and

actuators, with the option of also integrating third party components. We also assist with mission analysis and commissioning, effectively being your outsourced ADCS team.



#### **ADCS COMPUTER**

- Simple API for interface to main OBC
- Bootloader with in-orbit reprogramability for all parts of the ADCS
- Non-volatile memory for permanent storage
- Firmware images for each component
- TLM and event logging and monitoring
- Sensor mounting configuration and calibration
- Range of estimators and controllers
- Synchronization of ADCS components (including PPS input)
- Power monitoring, regulation, and switching
- Fault detection, isolation and recovery (FDIR) mechanisms



CubeSpace is an aerospace company that specializes in small satellite Attitude Determination and Control Systems (ADCS). We offer modular, low-power ADCS components with class-leading performance. Our components are designed to be compatible with almost all commercially available CubeSat suppliers.

We support each customer to evaluate their ADCS needs, choose the correct hardware solution, and tailor this solution to correctly integrate into their satellite.

Our service is personalized, and we strive to help customers find the balance between powerful ADCS performance and reliable operations.

CubeSpace, The LaunchLab Hammanshand Road, Stellenbosch, 7600 South Africa Our  $480\text{m}^2$  facility is equipped with state-of-the-art equipment such as  $160\text{m}^2$  clean room space with an 8-meter-long dark optics calibration room, humidity controlled thermal chamber, Helmholtz coil, a  $75\text{m}^2$  test facilities with a  $900\text{ mm} \times 1300\text{mm}$  thermal vacuum chamber, 8kN vibration shaker, auto-winding machine, wheel balancing machine, and high accuracy 3-axis rotation stages.

The CubeSpace team consists of highly qualified aerospace technicians with IPC class 3 training, and engineers specializing in control system research and development. Our company has delivered more than 2000 ADCS components to 130 clients for approximately 180 satellites.

Telephone General Enquiries Sales Enquiries Office Hours +27 (79) 945 9957 info@cubespace.co.za sales@cubespace.co.za 06:00 - 15:00 GMT